
i Armed Services Technical Information Agency

i-________________,

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA
METED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED

GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS,
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE
GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE,
USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER

KNOTT BUILDING, DAYTON, 2, OHIO

UNCLASSIFI ED.



AFCRC Technical Report 53-27

GEOPHYSICAL RESEARCH PAPERS

No. 22

ASYMPTOTIC APPROXIMATION

FOR THE ELASTIC NORMAL MODES

IN A STRATIFIED SOLID MEDIUM

NORMAN A. HASKELL

August 1953

Geophysics Research Directorate

Air Force Cambridge Research Center

Cambridge, Massachusetts

r

.47

"4



Best
Avai~lable

Copy



ABSTRACT

The asymptotic approximation method previously applied to the case

of compressional wave propagation in an inhomogeneous fluid medium

is carried through for the case of a solid medium. Although the method

is based on the assumption of continuous variation of the elastic proper-

ties, a comparison of the dispersion curves computed by the approximate

theory with those computed by the exact theory for a medium made up of

two or three homogeneous layers indicates that the approximate theory

is fairly accurate for the normal modes of higher order than the fifth or

sixth. The approximation fails for the modes of lowest order, which are

those of greatest seismological interest, but even in this case the

asymptotic theory, when used in conjunction with the limiting forms of

the exact theory, has some value for the purpose of rough estimation.1.
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ASYMPTOTIC APPROXIMATION FOR THE

ELASTIC NORMAL MODES IN A STRATIFIED SOLID MEDIUM

1. INTRODUCTION

In a previous paper, I expressions were derived for the dispersion of the normal modes of elastic waves

in a semi-infinite solid medium made up of a finite number of homogeneous parallel layers of different

densities and elastic constants. The numerical computation of the phase velocity ve frequency curves

from these expressions is extremely laborious if there are more than two layers and almost prohibitively

so if there are more than three. In discussing the propagation of seismic surface waves in the earth's

crustal layers, particularly in the continents, it may become necessary to employ more complex models than

those that have been treated previously. It is therefore of interest to consider the applicability to seismic

wave propagation problems of the asymptotic approximation methods that have been applied to fluid media

with continuously varying elastic paramaters. 2 ,3

There is one serious limitation that should be pointed out at the outset. The approximations that we

shall use are based on the assumption that the properties of the medium are slowly varying functions of

one coordinate in the sense that the relative variation within a wavelength is small. For the frequencies

of greatest seismological interest (periods from about 0.5 second to something over a minute), the assump-

tion is certainly not correct for the earth's crustal layers. Nevertheless it may be of some interest to carry

the analysis through for the case of a medium of slowly varying properties and then compare the resulting

normal-mode dispersion curves with those obtained from the exact theory for discrete homogeneous layers.

2. SEPARATION OF THE EQUATIONS OF MOTION IN CYLINDRICAL COORDINATES

In cylindrical coordinates the equations of motion are

pZ2 U,/ -g2 = B •T 'r + (Trr - T 96)/r + BTrs/r + 'Tr 1 -/s (1)

p•2u /Zt2 Z= /Zr + T,./r + ZTse/rZO + T.,T/3z (2)

p'•2s/Z 2 = ZT,/Zr + 2TrO/r + ZTOO/rZO + ZT, 9 /•7z, (3)

Manuscript received for publication 13 Feb. 1963.
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where the components of the stress tensor are given by

T,, = X8 + 2/,u uD / Br (4)

2= X + 2ýz ýu/. z (5)

T-O-8= XS + 2 1 ((auO/r•9 + u,/r) (6)

T,X = u('u /Br + aur/Bz) (7)

To = u(Bu,/r - uo9/r + au,/r'O) (8)

T"9 = iIa(tIeI/z + Bu./r, 0) (9)

and

6= Bu/r r + u/r + Buo/r30 + au./ z (10)

The LamA elastic moduli X and AL and the density p are assumed to be function of the axial Coorhll ate

z, only. Following Sezawa'ss solution of these equations for the case of a homogeneous medium, we start

with particular periodic solutions in the form

ur w-2 -'xp (iwt) cos n 0 [F (z) d]. (kr)dr- F3 W I (kr)/r] (UI)

W-2 exp (ioot) coo n OF 2 (z) 1. (kr) (12)

UO &Uw2 exp (iwt) sin nO [F (z) dl. (kr.)/dr - F1 (z)n1.l (kr)..r ] (13)

where n may be any positive integer (including zero), w is the angular frequency, k is an arbitrary num-

ber which we shall eventually use as a parameter of integration, and FI, F2, and F3 are functions of z
to be determined. Since we shall follow Lamb's 6 method of developing a point source solution by integra-

tion of particular solutions of the above form, the Bessel functions of the first kind ,, (kr), rather than iga-

linear combination of functions of the first and second kinds, are the appropriate radial functions in this

case. An independent set of particular solutions may be obtained by substituting sin n 0 for cos n 0 in

Eqs. (11) and (12) and - cos n 0 for sin n 6 in Eq. (13). However, since we shall not be concerned with

the problem of representing particular types of point sources by summation over the azimuthal characteristic

number, n, the set given by Eqs. (11), (12). and (13) is sufficiently general for our purpose.

A
4 :.• . .. . . . .... . ... . . . .
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By substituting these expressions for the displacements in the equations of motion, we obtain the follow.

ing equations for the functions F, F 2 , and F3

•,F 1 + jF + IpW 2 - (X+2 A)V 2 ]FI + (K+ •)F 2  + .tF2 = 0 (14)

(X.+ 2 )F 3  + (X + 21 )F 2  + [p2V 2 - Ik
2 ]F 2 - (K.+ 2)kF - k 2 F 0 (15)

AF 3  + 4; 3  + rpco' - ;L V IF3  0 (16)

where the dot denotes differentiation with respect to x. If X, p, and p were constants, the suletitutions

F1  Z 2 - Z (17)

F 2  P k 2 Z 2 - z (18)

satisfy Eqs. (14) and (15) if the functions Z1, and Z 2 satisfy the equations

ZI + [pW//(k.+ 20) - k 2 ]Zi = 0 (19)

"i 2 + [pC02/. - k2] Z2 = 0. (20)

In this case the terms in Zi, represent waves traveling with the compressional wave velocity, at =

[(RX + 2 U4)/p] 1/2, and the terms in Z2 and F (which satisfies the same differential equation as Z 2)
represent waves traveling with the rotational wave velocity, / = [/L/p] 1/2.

Equations (17) through (20) are still approximately valid when X, A, and p are functions of z, pro-

vided /)u k, X/Xk, and p/pk are sufficiently small to be ignored. This means essentially that the

relative variations of the properties of the medium within a wavelength must be very small. When this is not

the case, it will not, in general, be possible to make a clear distinction between the two types of waves.

In other words, in an inhomogeneous medium there will be a coupling between compressional and rotational

waves at every point of the medium for which /1 uk, etc., are not negligible.

Making the substitution of Eqs. (17) and (18) and dropping the common time factor, exp (i•w), the ele-

mentary displacements become

Ur = W-2 cos n 0 [(Z 2 - Z )I d1 (kr)/dr - F2 3 , I3 (kr)/r] (21)

us = W 2 coo n 0 [k 2 Z2 - 1Z]in (kr) (22)

"ae = co2 sin na [Fa3 dt (kr)/ - (i 2 - ZI)X ua (kr)/r] , (23)

/
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and using Eqs. (19) and (20), the stress components across a horizontal plane become

TXg w-2 cog no [(pW 2 - 2)Uk 2)ZI + 2 Ak 2 2 2 ] (24)

T = CO- coo n 0 [{((2tk 2 -,po 2 )Z 2 - 2 A 21) d1. (kr)/dr - P3n 1. (kr)/r] (25)

T(F = -2L sin n9C['Fs dI(kr)/dr - {(2ALk2:-pC2) Z - 2 AL}n1.(kr)r2 (26)

At large values of kr, 1. (kr)/r becomes small compared to I. (kr) and d 1. (kr)/dr, so that the terms
in F 3 contribute appreciably only to u 9 and the terms in Z 1 and Z2 only to u, and u.. Thns at

large distances the F 3 terms represent horizontally polarized transverse (SH) waves, the Z 2 terms

represent transverse waves polarized in a vertical plane (SV), and the Z terms represent longitudinal
(P) waves.

3. BOUNDARY CONDITIONS

Solutions representing a point source at r = 0, z - A, may be obtained by requiring the stress com-

ponents to be continuous across the plane z h A, but allowing u,, u. and u o to have discontinuities

such that, when the elementary solutions are integrated with respect to k over the interval zero to infinity,

the discontinuities disappear except for a singularity at the source. The other boundary conditions are that

the stress components T.., TrS, Tox shall vanish at the free surface (z = 0) and at large values of z

the functions ZI, Z 2 and F3 must be of such a form as to represent, with the time factor exp (iot), only

waves propagated or exponentially damped in the + x direction.

Introducing the abbreviation y (z) = 2 /1 k 2/p WC2 = 2 (/3k/w)2, the stress boundary conditions at

the free surface and at the source are

[y(b) - 11 Z1 (0) - yi (0) Z2 (0) = (27)

4 y[(o) -11 Z2 (0) - y,(0) iZ (0)/k 2  0 (28)

i'(0) = 0 (29)

[y(k) -1] a Z, - A(A) A iZ2  = 0 (30)

[y(h) - A] eZ 2 - Y(A) Z•./k = 0 (31)

3. = 0 (32)

where A signifies the discontinuity in any quantity at X = A.
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Let Ma(k, z) and Na (k,z) be two linearly independent solutio' of Eq. (19) which, with exp (i4t),

represent waves propagating in the negative and positive z directions respectively for large values of z.

Let MA (k,z) and N'(kz) be the two corresponding solutions of Eq. (20). The boundary conditions at the

free surface, the source, and at infinity may then be satisfied by solutions of the form

0 < z <h Z = AMa + BNa (33)

Z2 = CM, + DNA (34)

F3  = EM + FN/1 (35)

h < z Z, = GNM (36)

Z 2 = HN/A (37)

F3 = INA. (38)

By using Eqs. (30) and (31) and integrating with respect to k from zero to infinity, the discontinuities

in the displacements at z = h become

AWr = - -2 cos n 0 f [(A Z /y(4) } d 1. (kr)/dr + A F3 na 1 (kr)/r ]dk (39)
0

A, = ow-2 coo n f (A Z 2 /Y(A) 1 (kr) V k (40)

As0 &2 @sn n9 f [AF 3 d1.(kr)/dr + (A ZI/Y (h) n1. (kr)/r]dk (41)

0

If we. aet

A ZI = - 2' y (h) k Pp (42)

A Z2 = W2 Y(h)k V" S, (43)

A F3 = 2 k"+1Q (44)

- ~ -~ -
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where P., S,, Q. are constants, the discontinuities become

Aur = coo n9 [P1 (d/dr) - nO Q2r I f 1. (kr) k+ Adk
0

Aus = coo nO Sf I.(kr)km+ldk
0

aO

A as= sin n 0 [Q.(d/dr) - n P5 /r fi1 (kr) ka+ dk A
0

The integral in these expressions, considered as the limit of f e -ak I (kr) k' + I dk an a approaches

zero, vanishes everywhere except at r - 0, where it has an essential singularity, thus satisfying the

point source requirements.

From Eqs. (33) to (38) we have

AZ1 = (G-B) Na(h) - A Ma(h) (45)

A Z = (H- D) NA(h) - CMA (A) (46)

AF3  = (I -F) Ng8h) - E M P(h) . (47)

By using Eqs. (27) through (32) with (42) through (47), the coefficients in Z , Z2 and F3 may be deter-

mined as follows

A =w2 k +1 b-1 [S {-(h) - 1iN(h) + P 'yh) /V(h) (48)CK a ax

C =b [P {y (Ah)- 1 N8 (h) + k• S n 'YVW ) W (49)

B = oC2k +1 r- (k) [P. W(k) + S X (k)] (50)

D =- co2 k+1'rl(k) [PM Y (k) + S5 Z (k)] (51)

18 (52)

F G - 0 " b= B a O+ i [ (h)/ (o) (53)

C = B + (12 k'÷lb• [Pn )IA)P (A) + S5 {(Al)-1}Afc(h)] (54)j

H = D c#)2 k+' b- 1 [P {y(A)- 1})MMh) + k'2S. (h) k'8)] (55)
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1= F- 2 k" + Q, 6 (A• ) b1 (56)

The new symbol@ introduced in these expressions are

ba = MNa ha - imN (57)

bB=Al £N A - MAN(58)

f(k) = [y(0) - 1]2 Na (0) N (0) - [y(0)/k] 2 N(0) N(0) (59)

IFa(k) = bS1 [.(0){y(0)- i}{y(a) - i} (h)ba + {y(0)/k} 2y(&)Mj(0)N (h)N•(0)

- {y(0) - 11}2 y (A) Ma(0) ( N(h) N (0)] (60)

X (k) = b 1 [y (0) {Y (0) - 1 y (A) k•- (h) b, + {y(O)/kY 2{y(.) - I}I -O)jN•k)Na (0)
a { a (o •{TC) -l}M 0 ah)N (0)]N~ )h ( 61)

- (Y (0) - 1 }2 { TY (h) - 1} Ma (0) Na-(k) Na (o)] (61)

Y (k) = b Y1 ("(0)(Y(0) -1 ( )kyNh) -2 h (h) b + {Y(0)/k)2 y (a) - (0) N (h) Nh(0)

-{y (0•) 1 2 y(h) (0) N} (h) N o(0) )] (62)

Z(k) =b-1 k-2[y(0){y(o) - 1){Y(k)-l}N (h)b~ + y (0)1k})2 _/(1h)M )N(N(o

{y 1) 2 - } (h) k6 (0) N A (A) NQ()) (63)

The quantities b. and b will, in general, be functions of k, but may be shown from the differential Eqs.
(19) and (20) to be independent of z. Since b. and b, are the Wronskians of pairs of linearly independent
functions, they cannot vanish. Thus the coefficients A, C and E are finite for all finite values of k,
while B, D, G and H have poles at the zeros of f (k) and F and I have poles at the zeros of ND (0).

4. POINT SOURCE SOLUTION AS A SUM OF NORMAL MODE SOLUTIONS

We now integrate Eqs. (21), (22) and (23) with respect to k from zero to infinity and evaluate the inte-
pals in the form of sum of residues at the poles of the integrands by applying Lamb's 6 transformation of
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the path of integration in the complex k-plane. To simplify the resulting expressions the terms in

n,.l (kr)/r, which become small at large values of r, will be dropped. The displacements then become

U, = ri cos n Z k [d1/ 2)(k. r)ldr] [dcfl/ck] [N (z) {P. Y (km) + S Z (km)}

k Is m M,

urn

+ Na (z) {P, w (,k) + Sn X (k)}] (64)

= ii cos nO(9 k'÷l l1a2 )(k r) [df/dk] 1 k, ~ ~ {n~m nZm)

+ N (z) {PP W (k.) + S. X (k,.))] (65)

u 9 + (ki sin n x, k. l (d H) [ 8 (. k]k, 8(Z) QN (h)NA(0) (66)
u rn a m

where the k 's are the values of k at which f(k) = 0 and the k 'a are the values of k at which

NB (0) = 0. At k = ka the functions W, X, Y and Z reduce to

W (kj = ( -/ (0) 1 ] Y(0) {y(h) - i}NA(h) - Y(h){y(0) - } Na(h) N (O)/•N a(0)] (67)

X (k,,.) = [y(0) - 11 [y (0) y (h) k- 2N (h) - {(0)) - 1}{y(A) - 1}Na (h) N A(0)/N (68)

Y(k) = Iy (0) -1 [Y(0) y(h)k-2Nra(h) - {Y(0) - 1}{y(h) - 1}N(h) Na(0)/NB(0)] (69)

Z (k,,) = [y (o) - 1] k- 2 [y (0) (y (h) - 1}Nt(h) - y(M,) {Y(0) - 1},)'N(8)N,(0)/NaM (0)1. (70)

An expression for the velocity potential in a fluid medium in a form analogous to Eqs. (64), (65) and (66)

for the case of a radially symmetrical point source (n = 0), has been derived in a previous paper. 3 It was

shown that at sufficiently high frequencies the interference pattern produced by the superposition of a large

number of normal modes leads to a distribution of amplitudes which is the same as that which would be

computed on. the basis of ray geometry. In particular, if the variation of velocity with z is such as to

produce a geometrical shadow zone, the normal modes interfere destructively in the shadow zone. At finite

frequencies, the destructive interference is not quite complete and there is a residual disturbance that is

given by expressions formally similar to those occurring in the optical theories of diffraction at barriers and

caustics. It does not appear that any new conclusions of much significance will emerge from carrying
through the same analysis in the case under consideration. What we do wish to examine further is whether

or not the asymptotic solutions of Eqs. (19) and (20) can be used to draw any conclusions concerning the

dispersion characteristics of the normal modes of low order, that make the principal contribution to the low

frequency surface wave phases on seismograms.

4S-P -2~'~an~
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Fig. 1. Velocity function for Co. 1. Fig. 2. Velocity function for Cam IL

Ca. L. Velocity hiemo".s momotmical.y with z a Ahowa in Fig. 1

< % Na-" (2/wuksa)T exp k-kya(Z) + 57'i/12] (78)

:>aO}s> N (2/irksa)T °rexp(-kya() + Sri/12] (79)

* No, 2 (2/wk 8)T exp (2 7i/3) coo k x, (1) - 77/4] (80)

S < aJ

7(a1 = fV- (.)/az1] d d a > a (81)

sa (s) f' (c/al)]' -1 dz '<a (82)

& oi

and a s2 Ihvalue of sas which a c. For0 e%, a my be seteq"Ito zeo inEqs.(81and

(82).



Case 1. Velocity has a msingle minimum, al at 3 , as shown in Fig. 2

1

al Na - (2/77ksa5" exp ( - kya,2 (z) + 577i/121 (83)

aI< C < ao I•..

Na- (2/77rkaS exp [-kya, 2(z) + 5i/12) (84)

(11 <C < at• . INa 2 (2/Tksa)-'T exp (2 77i/3) con [kz, (z) -7/4) (85)

aI <z< at

z1 1<c<o N< " 2 (2/77ksa ))T exp Iky7 , 1 (z) + 5 70i/12] con (k xa02 (a,)] (86)

a <aI J
C > ( 0 I

Na " (2/lrk, a)i exp - kya.2 (S) + 5IT i/121 (87)

Na 2 (21/7 ) 3xp (2 ni/3) co. [kxa 2 (z) - 7/4] (88)J• < a

where

ym. 212) f v,/1 - [c/a (s)T'] (• 89)
a2

Ya ,0() = c1i- [c/(X(z)I 2 dz (89)

a2Yrz z()= [C/a (z)] 2 dz(0

xM. 2 (3) = f I/[/a(z)]2 -dz (91)

and for c < aI we take a1 = a2

To the same order of approximatioa the derivative Na is given by

Case I

1

NC < a (2 ka a/n)T- exp k ky,~ 77i/021 (92)

ao Nh " (2 kaa//)T exp -ky•(z) - i112] (93)

z >a

c> a0
2 } N 2(2 k a/1Fexp (2 7Fi/3) min [k x.(8) 1~7/4] (94)
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t CaseDI

ta Na " ( k°J/) exp [ -<y. (<) (,i/12])

8 a 2 cc (2 1s 7) x o.2()-7 2

al < € a % 2 (2 ks/ar•- exp (2 -Ti/3) min [kO. 2 (Z) 7/4(9al < z < a 2

aI< C < %I

a < ::o N3 - (2 k.,/ 7 )T exp [ k ya. I (z) =7i /12] con [x/. 2 (a,)] (98)
X < aI

C > a I

0} >. 2 (2 k&a3 /702 exp (2 7n i /3) sin [kSX. 2(z) - 7T/4) (100)
z < a:I

The functions NA and N6 are given by the same expressions with B3 substituted for a. Correspond-

ing values of z at which /3 c are denoted by b. The characteristic Eq. (72) for the normal modes of

Rayleigh type then takes the following forms.

Case I

c < (o y (0) - 1] 2 [- (o) ]" V/'[1 - (c/la)') [1 (C/30 )2 ' = 0 (101)

/3o < a% ['(o) -1].] + [y(o)]"[.-(c/a)'][(c//3o)=1] tan [kV,,(O)-/4] = 0 (102)

,< [,(0) - 2]y- v(0)] 2 '[((C/ao)' -11 [(C/po)2 -1]

tan [(k, 6 (0)- 7/4 tan (k[., (0)-77/4] 0. (103)

Case 11

(y(Oh1~[v(0]' v'~-(c/) 2 ) (k1E 2 (b,) 0(106
y </10) - 1= - [ (0)] 2 V[ /o [I -(c//0o)] = 0 (104)

S<c<.o<a {[y(o)= It l [[(O)J]o'[-(./ad1] con [k (.l)] 0 (106)

0o <c < ý ( [y(O) -11J + [y(O)]I V/[l -(c/ao) 2 ] ((c//3o)2 - 1]

tan (kI XS .(0) -11/4] 0 (106)
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a< <c< a0  { y (0) -] 2 1+ y(o)] 2 1 [1 - (C/%)2 ] [(C/fio) 2 - 1]

tan k. z 2 (0) -T/4)} co. [k 0.2(01)] = 0 (107)

C > a0  [y(o) -1]2 - [y(0)]2 V [(c/%) 2 - 1] [((c/1d 2 - 1] tan [k ,2 (0) - 77/4]

tan [k z,2(0) -i7/4] =0 • (108)

Equations (101), (104), and the first factor of Eq.(106) are the same as the equation for the velocity of

Rayleigh waves on a homogeneous medium having velocities a = ao and /1 = 80. This equation deter-

mines a single real value of the phase velocity, c, for all values of k. Actually, of course, this value of

c is merely the asymptote approached by the Rayleigh wave phase velocity at high frequencies, so that,

the present approximation is inadequate to deal with the dispersion of the mode of lowest order.

The characteristic Eq. (73) for the normal modes of SH type has the following asymptotic forms.

Case I
C < A0 No roots exist

c > io min [kAX (0) - 7T/4 1 = 0

or k'• z (0) = 1T(m + 1/4) n = 0,1,2,3,.... (109)

Came H

c <IAl No roots exist

A,<C < 3w cos [rk, ZA420l)] = 0

or + z. , X (0. ) = 1 A7u( + 1/2) u 0, 1,2,3,.... (110)

J00 < e sin [k.' 2 (0) - 7r/4] 0

or k. x., . (0) = 7 (nI + 1/4) n = 0,1,2,3,.... (111)

6. APPUCATION OF APPROXIMATE THEORY TO A LAYERED MEDIUM

The development of the approximate expressions for the functions Na and N involves the assumption

that the velocities and their first derivatives are coatinuos functions of 2 so that, in general, the present
theory Is not applicable to a -edinm rode up of discrete layers. If the discontinuities In the velocities and
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Fig. 3. Comparison of dispersion curves for Rayleigh Modes in a two layered medium.

the density are small, however, the amplitudes of the waves reflected from the boundaries will be small ex-

cept for angles of incidence greater than the critical angle. If we can ignore the boundary reflections at

angles less than the critical angle, there is no fundamental distinction between the cases of continuous and

discontinuous velocity variation.

In the case of monotosically increasing velocity, the quantities x a (0) and x#(O) become for discrete

layers, each of causteat velocity,

a 1<C

sa (0) 1 di ¢vc/a)s -i (112)
Jul

j~ <C

"'s (0) X d, V(i/67,1T - 1 (113)
Jul'
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COMPARISON OF DISPERSION CURVES
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.. 4.11.0 10 100

Fig. 4. Comparison of dispersion curves for SH modes in a two layered medium.

where d, is the thickness of the ith layer and the summations are extended over all layers for which 0li

or I3• respectively are less than c. If the velocity of successive layers decreases and then increases,

we find the same Eqs. (112) and (113) for x 2.Q2(0) and xz A2(0) when. c > 0o0 and c > eo0 respectively.

When c < a 0 or c < 130, the summations extend only over the layers for which 0f, < c or 8, < c.

Phase velocity dispersion curves have been computed according to the present approximate theory and

according to the exact theory for a two-layered medium (the second being semi-infinite) having the following

properties:

, 1.81 fi2 /,b1  1.37

a/ 1A = 2.44 P1/ p, = i .

The results are plotted in dimensionless form, c/A 1 versus kd, for the first seven normal modes of

Rayleigh type in Fig. 3, and for the normal modes of SH type in Fig. 4. The exact and approximate curves
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Fig. 6. Comparison of dispersion curves for SH modes in a three layered medium, Case II.

From these comparisons, it appears that the approximate theory gives a fairly good representation of the

phase velocity dispersion curves for the normal modes of order higher than the 5th or 6th, except in the

immediate neighborhood of the low frequency cut offs. For the lower modes the approximation is not good

enough for quantitative purposes. In particular, in studies of seismic surface waves one will usually want

to compare an observed variation of group velocity, U = d(ck)/dk, with period, with the theoretical group

velocity curves for the modes of order m = 0 or 1 computed for some assumed velocity stratification. It

is quite evident that the approximate curves for the cases illustrated here would not be adequate for this

purpose.

It is believed, however, that the approximate theory will be found to have some value for the purpose of

qualitative estimation even for the modes of lowest order. For example, in the case shown in Fig. 3, we

know that the-correct curve for mi = 0 should approach the Rayleigh velocity of the semi-infinite layer as

k approaches zero, and from the asymptotic form of the exact theory for small valbes of k, we have an

expression from which the behavior of this curve for kd < < 1 can be computed without difficulty. We also

S~~tsion ~ ' - - -
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know that for U > 10 the phase velocity of this mode will be very close to the Rayleigh velocity of the

upper layer. With theme limiting values fixed and knowing that the approximate curve approaches the

correct curve for some intermediate value of e, the general form of the curve can be estimated within a

moderately broad band of uncertainty. In the came under consideration, we could have inferred by such a

process that the minimum group velocity would probably occur at some value of kd between 2 and 4. The

actual minimum, obtained by a graphical method from the plotted "exact" curve, is at kU - 3.05. In more

complex cases, where the labor of computing the dispersion curves by the exact theory may become prohibi-

tive, even so loose an estimate an this my be useful in limiting the range of possible structural models that

migt be used to explain a given set of observed dispersion data.

i
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